
‘‘Foiling the Cracker’’:
yA Survey of, and Improvements to, Password Securit †

S

Daniel V. Klein

oftware Engineering Institute
Carnegie Mellon University

Pittsburgh, PA 15217
dvk@sei.cmu.edu
+1 412 268 7791

W

ABSTRACT

ith the rapid burgeoning of national and international networks, the question
e

c
of system security has become one of growing importance. High speed inter-machin
ommunication and even higher speed computational processors have made the threats

o
of system ‘‘crackers,’’ data theft, data corruption very real. This paper outlines some
f the problems of current password security by demonstrating the ease by which indi-

fi
vidual accounts may be broken. Various techniques used by crackers are outlined, and

nally one solution to this point of system vulnerability, a proactive password checker,
is proposed.

n

T

1. Introductio

he security of accounts and passwords has always been a concern for the developers and users of

c
Unix. When Unix was younger, the password encryption algorithm was a simulation of the M-209
ipher machine used by the U.S. Army during World War II [Morris1979]. This was a fair encryption

s
t
mechanism in that it was difficult to invert under the proper circumstances, but suffered in that it wa
oo fast an algorithm. On a PDP-11/70, each encryption took approximately 1.25ms, so that it was pos-

r
c
sible to check roughly 800 passwords/second. Armed with a dictionary of 250,000 words, a cracke
ould compare their encryptions with those all stored in the password file in a little more than five

I

minutes. Clearly, this was a security hole worth filling.

n later (post-1976) versions of Unix, the DES algorithm [DES1975] was used to encrypt passwords.

r
The user’s password is used as the DES key, and the algorithm is used to encrypt a constant. The algo-
ithm is iterated 25 times, with the result being an 11 character string plus a 2-character ‘‘salt.’’ This

p
method is similarly difficult to decrypt (further complicated through the introduction of one of 4096
ossible salt values) and had the added advantage of being slow. On a µVAX-II (a machine substan-

c
tially faster than a PDP-11/70), a single encryption takes on the order of 280ms, so that a determined
racker can only check approximately 3.6 encryptions a second. Checking this same dictionary of

t
250,000 words would now take over 19 hours of CPU time. Although this is still not very much time
o break a single account, there is no guarantee that this account will use one of these words as a pass-

(
word. Checking the passwords on a system with 50 accounts would take on average 40 CPU days
since the random selection of salt values practically guarantees that each user’s password will be

-
b
encrypted with a different salt), with no guarantee of success. If this new, slow algorithm was com
ined with the user education needed to prevent the selection of obvious passwords, the problem

h

seemed solved.

hhhhhhhhhhhhhhhhh
† This work was sponsored in part by the U.S. Department of Defense.

R

- 2 -

egrettably, two recent developments and the recurrence of an old one have brought the problem of
password security back to the fore.

1) CPU speeds have gotten increasingly faster since 1976, so much so that processors that are
e

r
25-40 times faster than the PDP-11/70 (e.g., the DECstation 3100 used in this research) ar
eadily available as desktop workstations. With inter-networking, many sites have hundreds

t
of the individual workstations connected together, and enterprising crackers are discovering
hat the ‘‘divide and conquer’’ algorithm can be extended to multiple processors, especially

s
t
at night when those processors are not otherwise being used. Literally thousands of time
he computational power of 10 years ago can be used to break passwords.

e2) New implementations of the DES encryption algorithm have been developed, so that th
time it takes to encrypt a password and compare the encryption against the value stored in

-
g
the password file has dropped below the 1ms mark [Bishop1988, Feldmeier1989]. On a sin
le workstation, the dictionary of 250,000 words can once again be cracked in under five

t
t
minutes. By dividing the work across multiple workstations, the time required to encryp
hese words against all 4096 salt values could be no more than an hour or so. With a

e
recently described hardware implementation of the DES algorithm, the time for each
ncryption can be reduced to approximately 6 µs [Leong1991]. This means that this same

3

dictionary can be be cracked in only 1.5 seconds.

) Users are rarely, if ever, educated as to what are wise choices for passwords. If a password
t

c
is in a dictionary, it is extremely vulnerable to being cracked, and users are simply no
oached as to ‘‘safe’’ choices for passwords. Of those users who are so educated, many

.
M
think that simply because their password is not in /usr/dict/words, it is safe from detection

any users also say that because they do not have any private files on-line, they are not
t

t
concerned with the security of their account, little realizing that by providing an entry poin
o the system they allow damage to be wrought on their entire system by a malicious

B

cracker.

ecause the entirety of the password file is readable by all users, the encrypted passwords are vulner-

s
able to cracking, both on-site and off-site. Many sites have responded to this threat with a reactive
olution – they scan their own password files and advise those users whose passwords they are able to

e
i
crack. The problem with this solution is that while the local site is testing its security, the password fil
s still vulnerable from the outside. The other problems, of course, are that the testing is very time con-

-
w
suming and only reports on those passwords it is able to crack. It does nothing to address user pass

ords which fall outside of the specific test cases (e.g., it is possible for a user to use as a password the
t

t
letters ‘‘qwerty’’ – if this combination is not in the in-house test dictionary, it will not be detected, bu
here is nothing to stop an outside cracker from having a more sophisticated dictionary!).

-
w
Clearly, one solution to this is to either make /etc/passwd unreadable, or to make the encrypted pass

ord portion of the file unreadable. Splitting the file into two pieces – a readable /etc/passwd with all

s
but the encrypted password present, and a ‘‘shadow password’’ file that is only readable by root is the
olution proposed by Sun Microsystems (and others) that appears to be gaining popularity. It seems,

,
i
however, that this solution will not reach the majority of non-Sun systems for quite a while, nor even
n fact, many Sun systems, due to many sites’ reluctance to install new releases of software.†

s
t
What I propose, therefore, is a publicly available proactive password checker, which will enable user
o change their passwords, and to check a priori whether the new password is ‘‘safe.’’ The criteria for

,
i
safety should be tunable on a per-site basis, depending on the degree of security desired. For example
t should be possible to specify a minimum length password, a restriction that only lower case letters

s
p
are not allowed, that a password that looks like a license plate be illegal, and so on. Because thi
roactive checker will deal with the pre-encrypted passwords, it will be able to perform more sophisti-

h
cated pattern matching on the password, and will be able to test the safety without having to go through
hhhhhhhhhhhhhhhhh

† The problem of lack of password security is not just endemic to Unix. A recent Vax/VMS worm had great suc-
-

d
cess by simply trying the username as the password. Even though the VMS user authorization file is inaccessible to or
inary users, the cracker simply tried a number of ‘‘obvious’’ password choices – and easily gained access.

t

- 3 -

he effort of cracking the encrypted version. Because the checking will be done automatically, the pro-

o
cess of education can be transferred to the machine, which will instruct the user why a particular choice

f password is bad.

y

I

2. Password Vulnerabilit

t has long been known that all a cracker need do to acquire access to a Unix machine is to follow two
simple steps, namely:

1) Acquire a copy of that site’s /etc/passwd file, either through an unprotected uucp link, well

2

known holes in sendmail, or via ftp or tftp.

) Apply the standard (or a sped-up) version of the password encryption algorithm to a collec-
,

a
tion of words, typically /usr/dict/words plus some permutations on account and user names
nd compare the encrypted results to those found in the purloined /etc/passwd file.

d
m
If a match is found (and often at least one will be found), the cracker has access to the targete

achine. Certainly, this mode of attack has been known for some time [Spafford1988], and the

a
defenses against this attack have also long been known. What is lacking from the literature is an
ccounting of just how vulnerable sites are to this mode of attack. In short, many people know that

‘

there is a problem, but few people believe it applies to them.

‘There is a fine line between helping administrators protect their systems and providing a cookbook for

v
bad guys.’’ [Grampp1984] The problem here, therefore, is how to divulge useful information on the
ulnerability of systems, without providing too much information, since almost certainly this informa-

I
d
tion could be used by a cracker to break into some as-yet unviolated system. Most of the work that
id was of a general nature – I did not focus on a particular user or a particular system, and I did not

w
use any personal information that might be at the disposal of a dedicated ‘‘bad guy.’’ Thus any results

hich I have been able to garner indicate only general trends in password usage, and cannot be used to
t

a
great advantage when breaking into a particular system. This generality notwithstanding, I am sure tha
ny self-respecting cracker would already have these techniques at their disposal, and so I am not bring-

a
ing to light any great secret. Rather, I hope to provide a basis for protection for systems that can guard
gainst future attempts at system invasion.

I

2.1. The Survey and Initial Results

n October and again in December of 1989, I asked a number of friends and acquaintances around the

m
United States and Great Britain to participate in a survey. Essentially what I asked them to do was to

ail me a copy of their /etc/passwd file, and I would try to crack their passwords (and as a side benefit,

v
I would send them a report of the vulnerability of their system, although at no time would I reveal indi-
idual passwords nor even of their sites participation in this study). Not surprisingly, due to the sensi-

t
w
tive nature of this type of disclosure, I only received a small fraction of the replies I hoped to get, bu

as nonetheless able to acquire a database of nearly 15,000 account entries. This, I hoped, would pro-

E

vide a representative cross section of the passwords used by users in the community.

ach of the account entries was tested by a number of intrusion strategies, which will be covered in
s

n
greater detail in the following section. The possible passwords that were tried were based on the user’
ame or account number, taken from numerous dictionaries (including some containing foreign words,

o
phrases, patterns of keys on the keyboard, and enumerations), and from permutations and combinations
f words in those dictionaries. All in all, after nearly 12 CPU months of rather exhaustive testing,

s
approximately 25% of the passwords had been guessed. So that you do not develop a false sense of
ecurity too early, I add that 21% (nearly 3,000 passwords) were guessed in the first week, and that in

s
s
the first 15 minutes of testing, 368 passwords (or 2.7%) had been cracked using what experience ha
hown would be the most fruitful line of attack (i.e., using the user or account names as passwords).

/
These statistics are frightening, and well they should be. On an average system with 50 accounts in the
etc/passwd file, one could expect the first account to be cracked in under 2 minutes, with 5–15

,
a
accounts being cracked by the end of the first day. Even though the root account may not be cracked
ll it takes is one account being compromised for a cracker to establish a toehold in a system. Once

that is done, any of a number of other well-known security loopholes (many of which have been

- 4 -

.

I

published on the network) can be used to access or destroy any information on the machine

t should be noted that the results of this testing do not give us any indication as to what the uncracked
e

w
passwords are. Rather, it only tells us what was essentially already known – that users are likely to us

ords that are familiar to them as their passwords [Riddle1989]. What new information it did provide,

d
however, was the degree of vulnerability of the systems in question, as well as providing a basis for
eveloping a proactive password changer – a system which pre-checks a password before it is entered

-
w
into the system, to determine whether that password will be vulnerable to this type of attack. Pass

ords which can be derived from a dictionary are clearly a bad idea [Alvare1988], and users should be
y

t
prevented from using them. Of course, as part of this censoring process, users should also be told wh
heir proposed password is not good, and what a good class of password would be.

e
a
As to those passwords which remain unbroken, I can only conclude that these are much more secur
nd ‘‘safe’’ than those to be found in my dictionaries. One such class of passwords is word pairs,

w
where a password consists of two short words, separated by a punctuation character. Even if only

ords of 3 to 5 lower case characters are considered, /usr/dict/words provides 3000 words for pairing.

p
When a single intermediary punctuation character is introduced, the sample size of 90,000,000 possible
asswords is rather daunting. On a DECstation 3100, testing each of these passwords against that of a

e
o
single user would require over 25 CPU hours – and even then, no guarantee exists that this is the typ
f password the user chose. Introducing one or two upper case characters into the password raises the

A

search set size to such magnitude as to make cracking untenable.

nother ‘‘safe’’ password is one constructed from the initial letters of an easily remembered, but not

r
too common phrase. For example, the phrase ‘‘Unix is a trademark of Bell Laboratories’’ could give
ise to the password ‘‘UiatoBL.’’ This essentially creates a password which is a random string of upper

r
p
and lower case letters. Exhaustively searching this list at 1000 tests per second with only 6 characte
asswords would take nearly 230 CPU days. Increasing the phrase size to 7 character passwords makes

c
the testing time over 32 CPU years – a Herculean task that even the most dedicated cracker with huge
omputational resources would shy away from.

Thus, although I don’t know what passwords were chosen by those users I was unable to crack, I can
f

t
say with some surety that it is doubtful that anyone else could crack them in a reasonable amount o
ime, either.

2.2. Method of Attack

A number of techniques were used on the accounts in order to determine if the passwords used for them
e

g
were able to be compromised. To speed up testing, all passwords with the same salt value wer
rouped together. This way, one encryption per password per salt value could be performed, with mul-

r
tiple string comparisons to test for matches. Rather than considering 15,000 accounts, the problem was
educed to 4,000 salt values. The password tests were as follows:

n1) Try using the user’s name, initials, account name, and other relevant personal informatio
as a possible password. All in all, up to 130 different passwords were tried based on this

f
t
information. For an account name klone with a user named ‘‘Daniel V. Klein,’’ some o
he passwords that would be tried were: klone, klone0, klone1, klone123, dvk, dvkdvk,

,
e
dklein, DKlein, leinad, nielk, dvklein, danielk, DvkkvD, DANIEL-KLEIN, (klone), KleinD
tc.

2) Try using words from various dictionaries. These included lists of men’s and women’s
’

a
names (some 16,000 in all); places (including permutations so that ‘‘spain,’’ ‘‘spanish,’
nd ‘‘spaniard’’ would all be considered); names of famous people; cartoons and cartoon

l
c
characters; titles, characters, and locations from films and science fiction stories; mythica
reatures (garnered from Bulfinch’s mythology and dictionaries of mythical beasts); sports

‘
(including team names, nicknames, and specialized terms); numbers (both as numerals –
‘2001,’’ and written out – ‘‘twelve’’); strings of letters and numbers (‘‘a,’’ ‘‘aa,’’ ‘‘aaa,’’

l
s
‘‘aaaa,’’ etc.); Chinese syllables (from the Pinyin Romanization of Chinese, a internationa
tandard system of writing Chinese on an English keyboard); the King James Bible; biologi-

;cal terms; common and vulgar phrases (such as ‘‘fuckyou,’’ ‘‘ibmsux,’’ and ‘‘deadhead’’)

- 5 -

keyboard patterns (such as ‘‘qwerty,’’ ‘‘asdf,’’ and ‘‘zxcvbn’’); abbreviations (such as
-

i
‘‘roygbiv’’ – the colors in the rainbow, and ‘‘ooottafagvah’’ – a mnemonic for remember
ng the 12 cranial nerves); machine names (acquired from /etc/hosts); characters, plays, and

-
t
locations from Shakespeare; common Yiddish words; the names of asteroids; and a collec
ion of words from various technical papers I had previously published. All told, more than

-
c
60,000 separate words were considered per user (with any inter- and intra-dictionary dupli
ates being discarded).

3) Try various permutations on the words from step 2. This included making the first letter

(
upper case or a control character, making the entire word upper case, reversing the word
with and without the aforementioned capitalization), changing the letter ‘o’ to the digit ‘0’

t
(so that the word ‘‘scholar’’ would also be checked as ‘‘sch0lar’’), changing the letter ‘l’ to
he digit ‘1’ (so that ‘‘scholar’’ would also be checked as ‘‘scho1ar,’’ and also as

,
a
‘‘sch01ar’’), and performing similar manipulations to change the letter ‘z’ into the digit ‘2’
nd the letter ‘s’ into the digit ‘5’. Another test was to make the word into a plural

t
(irrespective of whether the word was actually a noun), with enough intelligence built in so
hat ‘‘dress’’ became ‘‘dresses,’’ ‘‘house’’ became ‘‘houses,’’ and ‘‘daisy’’ became

’
f
‘‘daisies.’’ We did not consider pluralization rules exhaustively, though, so that ‘‘datum’
orgivably became ‘‘datums’’ (not ‘‘data’’), while ‘‘sphynx’’ became ‘‘sphynxs’’ (and not

w
‘‘sphynges’’). Similarly, the suffixes ‘‘-ed,’’ ‘‘-er,’’ and ‘‘-ing’’ were added to transform

ords like ‘‘phase’’ into ‘‘phased,’’ ‘‘phaser,’’ and ‘‘phasing.’’ These 14 to 17 additional

t
tests per word added another 1,000,000 words to the list of possible passwords that were
ested for each user.

4) Try various capitalization permutations on the words from step 2 that were not considered
’

w
in step 3. This included all single letter capitalization permutations (so that ‘‘michael’

ould also be checked as ‘‘mIchael,’’ ‘‘miChael,’’ ‘‘micHael,’’ ‘‘michAel,’’ etc.), double
’

‘
letter capitalization permutations (‘‘MIchael,’’ ‘‘MiChael,’’ ‘‘MicHael,’’ ... , ‘‘mIChael,’
‘mIcHael,’’ etc.), triple letter permutations, and so on. The single letter permutations

-
m
added roughly another 400,000 words to be checked per user, while the double letter per

utations added another 1,500,000 words. Three letter permutations would have added at
.

T
least another 3,000,000 words per user had there been enough time to complete the tests

ests of 4, 5, and 6 letter permutations were deemed to be impracticable without much

5

more computational horsepower to carry them out.

) Try foreign language words on foreign users. The specific test that was performed was to
f

C
try Chinese language passwords on users with Chinese names. The Pinyin Romanization o

hinese syllables was used, combining syllables together into one, two, and three syllable

e
words. Because no tests were done to determine whether the words actually made sense, an
xhaustive search was initiated. Since there are 398 Chinese syllables in the Pinyin system,

w
there are 158,404 two syllable words, and slightly more than 16,000,000 three syllable

ords. A similar mode of attack could as easily be used with English, using rules for
b

†

uilding pronounceable nonsense words.

6) Try word pairs. The magnitude of an exhaustive test of this nature is staggering. To sim-
.

E
plify this test, only words of 3 or 4 characters in length from /usr/dict/words were used

ven so, the number of word pairs is O(10) (multiplied by 4096 possible salt values), and7

.

F

as of this writing, the test is only 10% complete

or this study, I had access to four DECstation 3100’s, each of which was capable of checking approxi-
r

s
mately 750 passwords per second. Even with this total peak processing horsepower of 3,000 tests pe
econd (some machines were only intermittently available), testing the O(10) password/salt pairs for10

s
a
the first four tests required on the order of 12 CPU months of computations. The remaining two test
re still ongoing after an additional 18 CPU months of computation. Although for research purposes

hhhhhhhhhhhhhhhhhh
† The astute reader will notice that 398 is in fact 63,044,972. Since Unix passwords are truncated after 8 charac-

t

3

ers, however, the number of unique polysyllabic Chinese passwords is only around 16,000,000. Even this reduced set
was too large to complete under the imposed time constraints.

- 6 -

-
r
this is well within acceptable ranges, it is a bit out of line for any but the most dedicated and resource
ich cracker.

2.3. Summary of Results

The problem with using passwords that are derived directly from obvious words is that when a user
r

s
thinks ‘‘Hah, no one will guess this permutation,’’ they are almost invariably wrong. Who would eve
uspect that I would find their passwords when they chose ‘‘fylgjas’’ (guardian creatures from Norse

s
t
mythology), or the Chinese word for ‘‘hen-pecked husband’’? No matter what words or permutation
hereon are chosen for a password, if they exist in some dictionary, they are susceptible to directed

h
t
cracking. The following table give an overview of the types of passwords which were found throug
his research.

A note on the table is in order. The number of matches given from a particular dictionary is the total

w
number of matches, irrespective of the permutations that a user may have applied to it. Thus, if the

ord ‘‘wombat’’ were a particularly popular password from the biology dictionary, the following table

o
will not indicate whether it was entered as ‘‘wombat,’’ ‘‘Wombat,’’ ‘‘TABMOW,’’ ‘‘w0mbat,’’ or any
f the other 71 possible differences that this research checked. In this way, detailed information can be

A

divulged without providing much knowledge to potential ‘‘bad guys.’’

dditionally, in order to reduce the total search time that was needed for this research, the checking
e

o
program eliminated both inter- and intra-dictionary duplicate words. The dictionaries are listed in th
rder tested, and the total size of the dictionary is given in addition to the number of words that were

,
a
eliminated due to duplication. For example, the word ‘‘georgia’’ is both a female name and a place
nd is only considered once. A password which is identified as being found in the common names dic-

’
‘
tionary might very well appear in other dictionaries. Additionally, although ‘‘duplicate,’’ ‘‘duplicated,’
‘duplicating’’ and ‘‘duplicative’’ are all distinct words, only the first eight characters of a password are

used in Unix, so all but the first word are discarded as redundant.

- 7 -

iii
Passwords cracked from a sample set of 13,797 accounts iii

Type of Size of Duplicates Search # of Pct. Cost/Benefit
Password Dictionary Eliminated Size Matches of Total Ratio*

ii
User/account name 130 – 130 368 2.7% 2.830
C

†

haracter sequences 866 0 866 22 0.2% 0.025
1

C
Numbers 450 23 427 9 0.1% 0.02

hinese 398 6 392 56 0.4% 0.143‡

1
C
Place names 665 37 628 82 0.6% 0.13

ommon names 2268 29 2239 548 4.0% 0.245
8

M
Female names 4955 675 4280 161 1.2% 0.03

ale names 3901 1035 2866 140 1.0% 0.049
6

M
Uncommon names 5559 604 4955 130 0.9% 0.02

yths & legends 1357 111 1246 66 0.5% 0.053
3

S
Shakespearean 650 177 473 11 0.1% 0.02

ports terms 247 9 238 32 0.2% 0.134
5

M
Science fiction 772 81 691 59 0.4% 0.08

ovies and actors 118 19 99 12 0.1% 0.121
8

F
Cartoons 133 41 92 9 0.1% 0.09

amous people 509 219 290 55 0.4% 0.190
1

S
Phrases and patterns 998 65 933 253 1.8% 0.27

urnames 160 127 33 9 0.1% 0.273
7

/
Biology 59 1 58 1 0.0% 0.01
usr/dict/words 24474 4791 19683 1027 7.4% 0.052

5
M
Machine names 12983 3965 9018 132 1.0% 0.01

nemonics 14 0 14 2 0.0% 0.143
1

M
King James bible 13062 5537 7525 83 0.6% 0.01

iscellaneous words 8146 4934 3212 54 0.4% 0.017
0

A
Yiddish words 69 13 56 0 0.0% 0.00

steroids 3459 1052 2407 19 0.1% 0.007 iii
Total 86280 23553 62727 3340 24.2% 0.053 i

c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
cii c

c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

i
The results are quite disheartening. The total size of the dictionary was only 62,727 words (not count-
ng various permutations). This is much smaller than the 250,000 word dictionary postulated at the

e
c
beginning of this paper, yet armed even with this small dictionary, nearly 25% of the passwords wer
racked!

hhhhhhhhhhhhhhhhhh
* In all cases, the cost/benefit ratio is the number of matches divided by the search size. The more words that need-

ed to be tested for a match, the lower the cost/benefit ratio.

† The dictionary used for user/account name checks naturally changed for each user. Up to 130 different permuta-
tions were tried for each.

‡ While monosyllablic Chinese passwords were tried for all users (with 12 matches), polysyllabic Chinese passwords
t

r
were tried only for users with Chinese names. The percentage of matches for this subset of users is 8% – a greater hi
atio than any other method. Because the dictionary size is over 16×10 , though, the cost/benefit ratio is infinitesimal.6

i

- 8 -

iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
iLength of Cracked Passwordsiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
i Length Count Percentageiii

2
1 character 4 0.1%

characters 5 0.2%
%

4
3 characters 66 2.0

characters 188 5.7%
%

6
5 characters 317 9.5

characters 1160 34.7%
%

8
7 characters 813 24.4

characters 780 23.4% i

c
c
c
c
c
c
c
c
c
c
c
c
ciiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii c

c
c
c
c
c
c
c
c
c
c
c
c

f
t
The results of the word-pair tests are not included in either of the two tables. However, at the time o
his writing, the test was approximately 10% completed, having found an additional 0.4% of the pass-

b
words in the sample set. It is probably reasonable to guess that a total of 4% of the passwords would
e cracked by using word pairs.

n

W

3. Action, Reaction, and Proactio

hat then, are we to do with the results presented in this paper? Clearly, something needs to be done
t

t
to safeguard the security of our systems from attack. It was with intention of enhancing security tha
his study was undertaken. By knowing what kind of passwords users use, we are able to prevent them

O

from using those that are easily guessable (and thus thwart the cracker).

ne approach to eliminating easy-to-guess passwords is to periodically run a password checker – a pro-

t
gram which scans /etc/passwd and tries to break the passwords in it [Raleigh1988]. This approach has
wo major drawbacks. The first is that the checking is very time consuming. Even a system with only

o
c
100 accounts can take over a month to diligently check. A halfhearted check is almost as bad as n
heck at all, since users will find it easy to circumvent the easy checks and still have vulnerable pass-

f
words. The second drawback is that it is very resource consuming. The machine which is being used
or password checking is not likely to be very useful for much else, since a fast password checker is

A

also extremely CPU intensive.

nother popular approach to eradicating easy-to-guess passwords is to force users to change their pass-
-

w
words with some frequency. In theory, while this does not actually eliminate any easy-to-guess pass

ords, it prevents the cracker from dissecting /etc/passwd ‘‘at leisure,’’ since once an account is bro-
.

T
ken, it is likely that that account will have had it’s password changed. This is of course, only theory

he biggest disadvantage is that there is usually nothing to prevent a user from changing their password
e

s
from ‘‘Daniel’’ to ‘‘Victor’’ to ‘‘Klein’’ and back again (to use myself as an example) each time th
ystem demands a new password. Experience has shown that even when this type of password cycling

y
g
is precluded, users are easily able to circumvent simple tests by using easily remembered (and easil
uessed) passwords such as ‘‘dvkJanuary,’’ ‘‘dvkFebruary,’’ etc [Reid1989]. A good password is one

a
that is easily remembered, yet difficult to guess. When confronted with a choice between remembering

password or creating one that is hard to guess, users will almost always opt for the easy way out, and

W

throw security to the wind.

hich brings us to the third popular option, namely that of assigned passwords. These are often words

a
from a dictionary, pronounceable nonsense words, or random strings of characters. The problems here
re numerous and manifest. Words from a dictionary are easily guessed, as we have seen. Pronounce-

s
able nonsense words (such as ‘‘trobacar’’ or ‘‘myclepate’’) are often difficult to remember, and random
trings of characters (such as ‘‘h3rT+aQz’’) are even harder to commit to memory. Because these pass-

t
words have no personal mnemonic association to the users, they will often write them down to aid in
heir recollection. This immediately discards any security that might exist, because now the password is

-
i
visibly associated with the system in question. It is akin to leaving the key under the door mat, or writ
ng the combination to a safe behind the picture that hides it.

f
e
A fourth method is the use of ‘‘smart cards.’’ These credit card sized devices contain some form o
ncryption firmware which will ‘‘respond’’ to an electronic ‘‘challenge’’ issued by the system onto

owhich the user is attempting to gain acccess. Without the smart card, the user (or cracker) is unable t

- 9 -

-
i
respond to the challenge, and is denied access to the system. The problems with smart cards have noth
ng to do with security, for in fact they are very good warders for your system. The drawbacks are that

a
they can be expensive and must be carried at all times that access to the system is desired. They are
lso a bit of overkill for research or educational systems, or systems with a high degree of user turn-

C

over.

learly, then, since all of these systems have drawbacks in some environments, an additional way must

3

be found to aid in password security.

.1. A Proactive Password Checker

The best solution to the problem of having easily guessed passwords on a system is to prevent them
-

i
from getting on the system in the first place. If a program such as a password checker reacts by detect
ng guessable passwords already in place, then although the security hole is found, the hole existed for

,
t
as long as it took the program to detect it (and for the user to again change the password). If, however
he program which changes user’s passwords (i.e., /bin/passwd) checks for the safety and guessability

I

before that password is associated with the user’s account, then the security hole is never put in place.

n an ideal world, the proactive password changer would require eight character passwords which are

l
not in any dictionary, with at least one control character or punctuation character, and mixed upper and
ower case letters. Such a degree of security (and of accompanying inconvenience to the users) might

b
be too much for some sites, though. Therefore, the proactive checker should be tuneable on a per-site
asis. This tuning could be accomplished either through recompilation of the passwd program, or more

A

preferably, through a site configuration file.

s distributed, the behavior of the proactive checker should be that of attaining maximum password
o

b
security – with the system administrator being able to turn off certain checks. It would be desireable t
e able to test for and reject all password permutations that were detected in this research (and others),

including:

g g
n
Passwords based on the user’s account
ame

Passwords based on the user’s initials

g g
or given name

Passwords which exactly match a word
)in a dictionary (not just /usr/dict/words

Passwords which match a word in the
-

t
dictionary with some or all letters capi
alized

g gPasswords which match a reversed
word in the dictionary

Passwords which match a reversed
l

l
word in the dictionary with some or al
etters capitalized

g gPasswords which match a word in a
r

t
dictionary with an arbitrary lette
urned into a control character

Passwords which match a dictionary
d

‘
word with the numbers ‘0’, ‘1’, ‘2’, an
5’ substituted for the letters ‘o’, ’l’,

g gPasswords which are simple conjuga-
,

a
tions of a dictionary word (i.e., plurals
dding ‘‘ing’’ or ‘‘ed’’ to the end of

the word, etc.)

Passwords which are patterns from the

g g

keyboard (i.e., ‘‘aaaaaa’’ or ‘‘qwerty’’)

Passwords which are shorter than a
r

t
specific length (i.e., nothing shorte
han six characters)

Passwords which consist solely of

n
numeric characters (i.e., Social Security
umbers, telephone numbers, house

g g
addresses or office numbers)

Passwords which do not contain mixed
s

a
upper and lower case, or mixed letter
nd numbers, or mixed letters and

punctuation

Passwords which look like a state-
issued license plate number

,
m
The configuration file which specifies the level of checking need not be readable by users. In fact

aking this file unreadable by users (and by potential crackers) enhances system security by hiding a
-

n
valuable guide to what passwords are acceptable (and conversely, which kind of passwords simply can
ot be found).

- 10 -

-
t
Of course, to make this proactive checker more effective, it woule be necessary to provide the dic
ionaries that were used in this research (perhaps augmented on a per-site basis). Even more impor-

r
w
tantly, in addition to rejecting passwords which could be easily guessed, the proactive password change

ould also have to tell the user why a particular password was unacceptable, and give the user sugges-

4

tions as to what an acceptable password looks like.

. Conclusion (and Sermon)

It has often been said that ‘‘good fences make good neighbors.’’ On a Unix system, many users also
n

a
say that ‘‘I don’t care who reads my files, so I don’t need a good password.’’ Regrettably, leaving a
ccount vulnerable to attack is not the same thing as leaving files unprotected. In the latter case, all

t
r
that is at risk is the data contained in the unprotected files, while in the former, the whole system is a
isk. Leaving the front door to your house open, or even putting a flimsy lock on it, is an invitation to

s
v
the unfortunately ubiquitous people with poor morals. The same holds true for an account that i
ulnerable to attack by password cracking techniques.

s
k
While it may not be actually true that good fences make good neighbors, a good fence at least help
eep out the bad neighbors. Good passwords are equivalent to those good fences, and a proactive

R

checker is one way to ensure that those fences are in place before a breakin problem occurs.

eferences

.Morris1979
Robert T. Morris and Ken Thompson, ‘‘Password Security: A Case History,’’ Communications of
the ACM, vol. 22, no. 11, pp. 594-597, November 1979.

.DES1975
‘‘Proposed Federal Information Processing Data Encryption Standard,’’ Federal Register

B

(40FR12134), March 17, 1975.

ishop1988.
Matt Bishop, ‘‘An Application of a Fast Data Encryption Standard Implementation,’’ Computing

F

Systems, vol. 1, no. 3, pp. 221-254, Summer 1988.

eldmeier1989.
David C. Feldmeier and Philip R. Karn, ‘‘UNIX Password Security – Ten Years Later,’’ CRYPTO
Proceedings, Summer 1989.

.Leong1991
Philip Leong and Chris Tham, ‘‘UNIX Password Encryption Considered Insecure,’’ USENIX

S

Winter Conference Proceedings, January 1991.

pafford1988.
Eugene H. Spafford, ‘‘The Internet Worm Program: An Analysis,’’ Purdue Technical Report

G

CSD-TR-823, Purdue University, November 29, 1988.

rampp1984.
F. Grampp and R. Morris, ‘‘Unix Operating System Security,’’ AT&T Bell Labs Technical Jour-
nal, vol. 63, no. 8, pp. 1649-1672, October 1984.

.Riddle1989
Bruce L. Riddle, Murray S. Miron, and Judith A. Semo, ‘‘Passwords in Use in a University
Timesharing Environment,’’ Computers & Security, vol. 8, no. 7, pp. 569-579, November 1989.

.Alvare1988
Ana Marie De Alvare and E. Eugene Schultz, Jr., ‘‘A Framework for Password Selection,’’

R

USENIX UNIX Security Workshop Proceedings, August 1988.

aleigh1988.
T. Raleigh and R. Underwood, ‘‘CRACK: A Distributed Password Advisor,’’ USENIX UNIX
Security Workshop Proceedings, August 1988.

- 11 -

Reid1989.
Dr. Brian K Reid, DEC Western Research Laboratory, 1989. Personal communication.

